
Stepwise refinement of
Requirements and Safety
in SafeScrum

Tor Stålhane, IDI / NTNU

Thor Myklebust, ICT / SINTEF

Geir K. Hanssen, ICT / SINTEF

Børge Haugset, ICT / SINTEF

Challenge for all development

Time
TD

100%

Degrees of
freedom

Understanding

Challenges for safety-critical software

Architecture

• Important decisions have to be made early in the
project when we have little information

Safety analysis

• Must start as early as possible in a project

• Will generate new requirements due to the need
to
– make required functionality more safe

– add barriers to handle unsafe situations

An early start – 1
Safety must be
• Considered from day 1 => safety considerations

must be part of all decisions
• Based on

1. epics and architectural patterns
2. user stories and high level design
3. generic system components

Important challenge:
Many important decisions are made early, when we
have little knowledge of the final system

An early start – 2

The following well-known concepts should be used

• Architectural patterns – several exist for most
application areas

• Generic

– Hazard lists – environment and domain specific – e.g.,
FAA for aerospace

– Failure modes – from just a few (e.g. 2) to quite many
(e.g. 10)

– Fault trees – environment and domain specific – e.g.
IMO, building standards

Early safety analysis – 1

1. Write theme and epic – get an overview of
what we want to achieve

2. Select an architectural pattern

a. Allows us to identify generic components

b. Starting-point for next level safety analysis and
barriers

3. Apply FMEA to generic components to
identify barriers

4. Write detailed system requirements

Early safety analysis – 2

We must be able to involve all types of
stakeholders. Safety analysis is not a job only for
the safety analysts.

The methods we use have to be easy to

• Learn – no extensive coursing needed

• Use – all categories of stakeholders must be
able to contribute

Themes and epics

http://agile101.net/2009/08/10/the-difference-between-agile-themes-epics-and-user-stories/
http://agile101.net/2009/08/10/the-difference-between-agile-themes-epics-and-user-stories/

Preliminary Hazard Analysis – PHA

Hazard Cause Main effect Preventive

action

Epics and patterns

FMEA

Function Function description

Functional
failure mode

Effects Cause
Detection

Comments
Current method

Generic functional failure modes used as guide-words:
Over, Under, No, Intermittent, Unintended

Unit description
Failure description Failure effect on

the next level
Recommendation

Failure mode Failure cause

Generic components

User stories

Input Focused FMEA - Stories

Story ID: List of component input sources:
Suggested barriers
and new
requirements

Output
failure mode

Output failure
mode
description

Input deviation
Component
failure

Omission

Commission

Wrong action

Too late

Generic components

Generic failure modes

Be ware: Generic failure modes

• Is not a replacement for using your head

• Are most useful in the early stages where we
still have a lot of choices when it come to

– architecture

– barrier solutions

• Could be used as guide words in the analysis

Generic failure modes – examples

Component type Failure mode

Software systems - control
system, e.g., a PLC

Omission – something is not
done, no action

Commission – something more is
done
Wrong action

Delayed – right action but too
late

Hardware component, e.g. a
pump or a sensor

No action

Wrong action
Delayed action

We can use generic failure modes to
• simplify the FMEA process
• give the FMEA an easy start
• promote reuse of FMEAs wherever practical

Generic fault trees – 1

Generic fault trees give information needed to

• Get a broad overview on

– the consequences of component failures

– possible barriers

• Create checklists - what

– have we included in our system

– is left to be handled by others

Generic fault trees – 2

Architectural patters

There are several sources for real time software
patterns described as e.g.

• Message sequence diagrams

• UML classes

• Architectural patterns. Example follows

• State diagrams

Observe-and-react pattern

Observers Analyse Display

Sensors

Reactors

Possible weakness - environment not included =>
No feedback mechanism

Fire alarm

ABS

Observe-and-react – examples (1)

Observe – React with Leveson’s addition – 1

Observe – React with Leveson’s addition – 2

Allows us to consider the effect of

• Process problems
– Missing or wrong input

– Output that can cause harm

– Input that can create unforeseen – e.g. out of range –
process disturbances

• Model problems – process, automation and
interfaces
– Inconsistent

– Incomplete

– incorrect

Barriers

Example – theme and epics

Theme: a safer building

Epic ID: Fire alarm (1)

As a House owner

I want To discover fire as quickly as possible

So that I can evacuate people as early as possible

Epic ID: Fire alarm (2)

As a Fire brigade

I want
To discover the location of a fire as quickly as
possible

So that I can put out the fire as simple as possible

Generic fault tree for a building – fire fighting

Fire alarm pattern

Components:
• Fire sensors
• Alarm
• Alarm display
• Sprinkler
• Analyser - control unit

Example - PHA

Hazard Cause Main effect Preventive

action

No alarm in

building

Alarm system

failure

Power failure

No or delayed

evacuation

Periodic testing

UPS

No alarm to

fire brigade

Alarm system

failure

Power failure

Transmission

failure

No or delayed

fire brigade

Periodic testing

UPS

Ping on

transmission

lines

False alarm
Alarm system

failure

Unnecessary

evacuation
-

Based on Epic 1 and Epic 2

Choosing “The system”

There is a tight coupling between

• alarm system => discover and inform

• fire fighting system => put out or control

• the environment – the rest of the building.

It is important to decide what is inside and what
is outside the system

Our area of concern – inside

5
7

6
4

3

2

The environment – outside
Important to define what is inside and what is outside the system

5 4

3 2

1

Observers Analysis Display

Fire sensors

Local
alarm

Water
supply

Emergency
light

6

Remote
alarm

7

Fire alarm pattern

From Epic to User stories

Epic ID: Fire alarm
As a House owner
I want To discover fire as quickly as possible
So that I can evacuate people as early as

possible

Story ID: Fire display - 2
As a House owner
I want To know where the fire is
So that I can evacuate persons in the

area

Story ID: Local alarm – 5

As a House owner
I want To be made aware of the

fire
So that I can start necessary

actions – e.g. call the fire
brigade

Story ID: Local alarm – 5 List of component input sources:
• Analysis Suggested barriers

and new
requirements

Output
failure mode

Output failure
mode
description

Input deviation
Alarm
component
failure

Omission

No alarm No alarm

trigger

Alarm unit

malfunction

Lack of power

Equipment

• Duplication

• Periodic testing

Pinging connection to

analysis
Commission

Extra alarm Extra alarm

trigger

Alarm unit

short-circuit

Wrong action

No / false

alarm

No / false alarm

trigger

Alarm unit

• malfunction

• short-circuit

Periodic testing /

maintenance

Delayed Alarm delayed Delayed trigger - -

User story IF-FMEA

Based on the observe – react pattern

Main conclusions

We can start safety analysis early in the
development process if we

• Get the most important, high level
requirements in place early

• Decide what is inside and what is outside our
system

• Use
– Generic failure modes and architectural patters

– Domain specific fault trees and hazard lists

